首页> 外文OA文献 >Numerical unfoldings of codimension-three resonant homoclinic flip bifurcations
【2h】

Numerical unfoldings of codimension-three resonant homoclinic flip bifurcations

机译:共维三共振同斜翻转分叉的数值展开

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Resonant homoclinic flip bifurcations are codimension-three phenomena that act as organising centres for codimension-two inclination flip, orbit flip and eigenvalue-resonance bifurcations for homoclinic orbits to a real saddle. In a recent paper by Homburg and Krauskopf unfoldings for several cases of resonant homoclinic flip bifurcations were proposed as bifurcation diagrams on a sphere around the central singularity. This paper presents a comprehensive numerical investigation into these unfoldings in a specific three-dimensional vector field, which was constructed by Sandstede to explicitly contain inclination flip and orbit flip bifurcations. For both orbit and inclination flips different cases can be classified according to the eigenvalues of the saddle point. All possible cases are treated including complicated ones involving homoclinic-doubling cascades and chaos. In each case, by choosing a sufficiently small sphere around the codimension-three point in parameter space, the conjectured unfoldings are largely confirmed. However, for larger spheres interesting new codimension-three bifurcations occur, leading to a more complicated bifurcation structure. The results suggest an important trade-off between finding bifurcation curves numerically and introducing new bifurcations by enlarging the sphere too much.
机译:共振同向翻转分叉是3维共生现象,它们是同维轨道到真实鞍座的共维2倾角翻转,轨道翻转和本征值共振分叉的组织中心。在Homburg和Krauskopf的最新论文中,提出了几种共振单斜翻转分叉情况的展开,作为围绕中心奇点的球面上的分叉图。本文提供了对特定三维向量场中这些展开的全面数值研究,该向量场由Sandstede构造以明确包含倾斜翻转和轨道翻转分叉。对于轨道和倾斜翻转,可以根据鞍点的特征值对不同情况进行分类。所有可能的情况都得到了处理,包括涉及同宿加倍级联和混乱的复杂情况。在每种情况下,通过在参数空间中的余维三点周围选择一个足够小的球体,可以很大程度上确定推测的展开。但是,对于较大的球体,有趣的新余维出现了三个分叉,这导致了更复杂的分叉结构。结果表明,在数值查找分叉曲线与通过过度扩大球体引入新的分叉之间,需要进行重要的权衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号